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ABSTRACT

Let u be an r-semistable K-regular probability measure of index

E (0, 2] on a complete locally convex topological vector space E . It

is shown that the topological support S of u is a translated convex

cone if a E (0, 1) , and a translated truncated cone if a E (1, 2]

Further, if a- 1 and u is symmetric, then it is shown that S is

a vector subspace of E . These results subsume all earlier known results

regarding the support of stable measures. A result regarding the support

of infinitely divisible probability measure on E is also obtained. A

seminorm integrability theorem is obtained for K-regular r-semistable

probability measures u on E . The result of de Acosta (Ann. of Prob-

ability, 3(1975), 865 - 875)and Kanter (Trans. Seventh Prague Conf., (1974),

317 - 323) is included in this theorem as long as the measures are defined

on LCTVS and seminorm is continuous.

The research of this author was partially supported by the Office of Naval
Research under contract No. N00014-78-C-0468.



1. INTRODUCTION

Let E be a complete locally convex topological vector space (LCTVS)

and lot p be a stable probability measure (p.m.) of index a E (0, 2]

then it is shown by Tortrat [15] that for I 1 , S , the support of ,

is a certain cone.(if u ts synuetric, then it is shown by Rajput [13, 14]

that S is a subspace for all a ;this result for 1.< a < 2 is also

obtained by de Acosta [1]). Furthermore, if p is a continuous seminorm

(in fact measurability is enough) on E , then it is shown by de Acosta [1]

and Kantor [8] that

f pl(x) ,(dx) <-, for all 0 < 6 <

A natural and nontrivial generalization of stable measures is the class

of r-semistable measures, which was first introduced and studied on the

real line R by Paul Livy [12]. Later, Kruglov, in an interesting paper (9],

obtained a qdite explicit form of the characteristic function of r-semistable

p. measures on R and showed that this class has properties similar to

those of stable p. measures (similar situation is true in Hilbert space is

shown by Kruglov [10] and by Kumar [11]). Partialy motivated from these

papers, we raised and completely answered, in this paper, the question of

whether r-semistable p. measures have properties similar to those of stable

p. measures mentioned above. Explicitly, we obtain the following results:

Let v be a K-regular r-semistable p. measure (see Definition 2.1) of index

a e (0, 2] on a complete LCTVS E , then S ,the support of u , is a

translated convex cone or a translated truncated cone according as whether

0 < < I or 1 < 2 ; further, if a l I and m is smetric, we

prove that S is a subspace (Theorem 3.2). This result subsumes all

earlier known results regarding the support of stable measures [1, 4, 13, 14,

15]. (A general theorem which gives a formula for the support of K-regular

Infinitely divisible (i.d.) p. measures on E and which includes some



results for the supports of i.d. measures derived in [4, 14, 15] is also

obtained). Let u and E be as above and p a continuous seminorm on

E ; then f pa(x) u(dx) < .,if 0 _ 6 . This result includes the
E

seminorm integrability theorem for stable measures in [1, 8], as long as

the measures are defined on LCTVS and p is continuous.

Our proof of the support theorm for i.d. measures uses similar ideas

to those of Brockett [4], who proved part of our result in Hilbert spaces,

and Tortrat [15, 16], who proved similar results under different hypotheses

in certain LC spaces. Our techniques of proof of the support theorem for

r-semistable measures, however, seem new and quite interesting. Our proof

of the seminorm integrability result is classical and has the drawback in

that it uses a strong central limit theorem in Banach spaces [2].

2. PRELIMINARIES

Unless otherwise stated, the following conventions and notation will

remain fixed in this paper:

All vector spaces considered are over the real field R and all topo-

logical spaces are assumed Handsdorff. If u and v are two finite K-

regular p. measures on the Borel a-algebra 5 of a topological vector

space E , then p 1 and u, v will denote, respectively, u convoluted

n-times and the convolution of u and v . If a 0 0 , then Ta will

denote the map on E defined by Ta(X) - ax , x E E ; further Tal will

denote the measure u o T-1 . For any x.E E , ax will denote the degen-

erate measure at x . E and E* will, respectively, denote a complete LCTVS

and its topological dual, and MK(E) will denote the class of all K-regular

p. measures on E . If- A is a subset of a topological space, then A will

denote Its closure; finally, e will denote the zero element of E

We will now give the definition of r-semistable p. masures and some

of their properties pertinent to this paper. This definition and results

are taken from Chung, Rajput and Tortrat [5], which may be referred to for



other properties of r-semilstable p. measures. The first result below dealing

with 1.d. p.m,. is taken f,-om [6, 7]

Definition 2.1: Let E be a LCTVS , M E MK(E) and 0 < r <

Then p is said to be r-semistable if there exists a K-regular p..measure

Ssequences (an} cR , an > 0 , and (xn 1 _ E , and an increasing sequence

of positive integers (kn } such that

kn
~kn

->r

* and

T *kn w

as n - . (the symbol ' -w ' will always denote the weak convergence).

(i) Let uaE MK(E) be i.d. then there exists a measure F (called

the Levy measure), a quadratic form Q on E* , an Xo.E E , and a compact

convex circled subset K of E with F(KC) <- such that, for every

f.E E* , the characteristic function ; of u has the representation

(f) exp(if(xo) ( +f W, x)dF(x),

E

where 0(f, x) - eif(x) - 1 - if(x) IK(x) (IK is the indicator of K) ;

further, Q and F are unique and x0 depends on the choice of K . For

the sake of simplicity of notation we will use the notation (xO* Q, K, F]

to denote the above representation for v

4* (i) Let u be as above with the representation [xO , Q, K, F], then

there exists a unique continuous (in weak topology) semigroup (us: s > 0)

Is
of K-regular i.d. p. measures with u a p (P is referred to as the sth

-* root of u and has the representation Cs x0, s Q, K, sF]), and

LiJ



S t St.]

(iii) Let u.E MK(E) and r,E (0, 1), then u is r-semistable if and

only if v is i.d. and there exist a unique a E (0, 2) and x(rn) E E such

that rn
r n . * , (2.2)

for all n = 1, 2,..... The number a is referred to as the index of

( -2 corresponds to the Gaussian case).

(iv) Let u E MK(E) then u is l-semistable , u is r-semistable for

every r.E (0, 1) a is stable.

(v) The class of stable K-regular p. measures are properly contained

in the class of r-semistable p. measures for every fixed r E (0, 1)

3. SUPPORT THEOREMS FOR I.D. AND r-SEMISTABLE PROBABILITY MEASURES

We recall that the support of a finite Borel measure 4 on a topological

space is, by definition, the smallest closed set (if it exists) with full

u-measure. If u is K-regular (or even r-regular) the support of v always

exists. The main purpose of this section is to prove the following two

theorems.

Theorem 3.1: Let v be an i.d. K-regular p.m. on E with represen-

tation [e, 0, K, F]

(I) Let & be the class of all convex circled Borel nbds. of e di-

rected by reverse set inclusion; I set F0 a F/KC, FU a F/K n U€, aU  V XdFu(x),

V0  e(Fo) , and vi, a e(Fu) (note au. E , see [7]), then

S11 In [ u (s. +au)T + s ol • (3.1)
V U'.V Ui "

In addition if (a I is tight and 8 Is any limit pt. of {aU, then

ad a aU

9, KCand Uc ,respectively, denote the complements of K and U



/.

S -a+I ,

where G(F) Is the semtgroup with zero element which is generated-by SF *

the support of F (S" fxrE E: F(V) 0 , for every open nbd. V of x}).

(ii) (Tortrat) If pK(x) dF(x) - where K is the Minkowski func-

tional of K which is assumed to take the value +- off the set nt nK

then {au is tight (au ls.,as in (I)); hence S U a + where

is any limit point of {a I

(iii) If f PK(x) dF(x) < .then S ,where A is a closed

set.

Theorem 3.2: Let u be a K-regular r-semlstable p.m., r E (0, 1)I of index a E(0, 2) on E.

(1) If ae (1, 2] , then S is a translate of a truncated cone;

further, if p is strictly r-semistable (i.e. x(r) - e in (2.2)), then

S is a truncated cone.

(ii) If a E (0, 1) , then S is a translate of a convex cone; further,

if u is strictly r-semistable, then S is a convex cone.

(III) If a = 1 and j Is symmetric, then S is a subspace.

Remark 3.3: As hinted in Section 1, part (iIl) of Theorem 3.1 and the

fact that S a a + Z7T under a hypothesis similar to f PK(x)dF(x) < ,

'A K
was obtained, in the Ilbert space setting, by Brockett [4) and the last

statement, under certain other hypotheses, was obtained, in LCTV setting,

by Tortrat [15, 16]. Our proof of Theorem 3.1 uses similar ideas as those

of [4]; however, because of the weaker structure available in arbitrary

LCTV spaces, modifications of techniques are required. Since clearly, from

Oefinition 2.1, every stable measure Is r-semistable for all r , Theorem 3.2

includes the support results regarding stable measures obtained in [E. 4, 13,

14, 15] ; and, in view of Section 2, the above theorem also provides the

corresponding results for 1-semistable measures.

....... ... ............ ..... . ...... , ... ... i ' 'I -. .. . . .- .. ... .... S . .. ", ..... . . . .



For the proof of Theorems 3.1 and 3.2, we will need the following lemas.

The proof of Lama 3.4 is elementary and Lema 3.5 is well known. Lema 3.6

was first conceived in [17] in the locally compact group setting; the proof

presented here is similar to the one in [17], but certain details need to be

verified. The last Lemma is taken from [5].

Lema 3.4: Let r E (0, 1) and a >lI . Set A- (rm/k: k 1, 2,....

([/r] , m - 1, 2,...} , where Ix] denotes the integral part of the number

x . Then A is dense In C0, m) if a > 1, and A is dense in [0, 1]

If =1

Lema 3.5: Let u and v be two K-regular p. measures on a LCTVS E

and a.E R , a 0 . Then

STai aS1 and S -r 1+S ] .

Lenma 3.6: Let {vn} and {n} be two nets of K-regular p. measures

on a LCTYS E and let v be a K-regular p.m. on E . Assume v vn * xn 9

for each n, (vn} is tight, and vn -W- . Then An  . 6e and

S - C U S Vn . Further, if S + with n , then S - -1 Vn

Proof: From [6], (xn} is tight; hence it has a subnet which converges

to a K-regular p.m. x . This implies v -v * x . Hence (using character-

Istic functions) x - 68 . Now, by repeating the above argument replacing

(An} by any subnet of it, we have that each subnet of (xn } in turn has a
subnet converging to 8, . This shows A "

e n8

Now we prove the second part. For each fixed m , let Um- E\-- •
n>m n

Then vn(UM) a 0 (by the definition of the support), for all n >m-. But,

since vn v , 1m inf vn(U,) _v(UM) . This imlies 0(um) - 0
n

for every m. So S q_ n tnum vn To prove the rverse inclusion,

let x E t),,, SvT and U be an arbitrary open nbd. of e . It followsM -- V

4n



that there exists a subnet fmk l of {m} such that (x + w) n S V )
*k

where W is a closed nbd. of e such that W + WcU . Then WcU-y 

for every y E W . From this and v = vmk * Am , we have

V(x + U) vmk (U - y + x) mk(d) > vmk(W + x) Xmk(W)

for all k . Taking k large and noting that xmk and

v mk(W + x) > 0 , for all k (as shown above), we have v(x + U) > 0. This

shows x, E S , which completes the proof of the second part. The proof of

*the last part is now obvious.

Note that in the above the hypothesis of tightness on (vn ) is needed

only to conclude xn-> e . Thus if Xn - e were already in the

hypothesis of the lemma, then the conclusions would hold without the

tightness hypothesis on {vnl . This observation will be used in the proofs

of Theorems 3.1 and 3.2.

Lemma 3.7: Let U be a K-regular strictly r-semistable p.m. of index

E (0, 1) on E . Then (f) a exp( f (eif(x) - I)dF(x)) and
E

£ PK(X) dF(x) < - , where F is the Livy measure of u and K is the com-
K
pact convex circuled set appearing in the Ldvy representation of u (note

u is i.d.)

We are now ready to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1 (I): It is shown in [7] that U a '

wi th O(f) a expqi (e t f ( x ) - 1 - i f(x))dF(x)) , that Oa vU * 8aU * U'

with XU i.d. and K-regular, for every U e and that AU e

(note v a [a, . K. F]) . Lem 3.6 applies and we get

Sio a n Iu ($v + aU)y . Then, since u a 0 * v 0 , we get (3.1). To

prove the second part denote by a the limit of a subnet of (6a } and-

use the same notation for the subnet. Then u0 * -aamU* U *aU-a *

AU*da -a -Wdo and vu  w 40 *-a Thus, since S U+ with U,

A U*~ n U ~ O -

____________________*,** - 1



we have, from Lemmua 3.6, S , j + a .Therefore, S *a + U S + S
'0 SVU VU 'VO

But (see, for example, [14]), -U S + S~ U , we have S~ a + T

Proof of Theorem 3.1 (Ii): For any f E E* ,we have

If(a )I I= f(x)d F(x)I *p+0(f) (x) d(F(x)

KflUc K

< coflst. pO
K

henebythe Bipolar theorem, {a I is contained in a compact subset.

a is tight.U

Pofof Theorem 3.1 Deot by M the mauewihis equal

to on K and 0 off K and recall that u = uo* v0O (see the proof

o i).The codto ()d~)< implies

4.0(f) = eia) exp{ f (e~fX dM(x)}', for some aO,E E,

(see [6]). Now define, for every U, E M4(~ is as in (i)) , Mu U M on

(K n U)C and M u(B) 3f PK(x ) dM(x), if B is a Borel subset of K n U.

Clearly M U is equivalent to M aida, since Mu i M , Mu is a Levy measurei £6]. Denote by aU the K-regular i.d. p.m. with ch. function

M exp{ f (ef(X) - 1 - "(x) )dMu(x)}IE l+ pK

tit follows that u0* S- U * ,U for some K-regular i.d. p.m. a
for every U E ?L.Now, since for f E E*

f x dM UWxI
E 1 + PKWx

*~ ]II £~~-- dM(x)l + If I Kx f2 -x) x,
(KnU)c 1 +p K(x) KflU 1 +PKkx)

+P0denotes the M nkowski functional of K0 ,the polar of K



f X dIIPK(X)f(x)d ,+ F(+5 x)

.pKo(f) [F(Uc) + f p2(x) dF(x)3 ;

+ ~ ~ ~ ~ ~ 'f KE "k duX elnst n

it follows that bu f x belongs to E and

if(bu)

u(f) - e exp{ f (elf(x) " 1) dMu(x)} . Therefore, since

f PK(x) dU(x) f PK(x) dF(x) < , using what we have proved in (ii) and
KrMJ K
replacing K by K n U (with U a closed nbd. of e), we have, for some

b,.E , S b6 + G = b6 + UTM , since M is equivalent to U .U U MU

Hence

S = s( ) +S [.a0 + S .+s +

S1 S V0 Svo  a0 SU Svo

(for a fixed closed nbd. U of e)

a0  + b 6 + G(M) + S O +S

i a G(F) + A ,

where AaS +a +b6 (note 9W - G(M) + S )
hU 0  VI

This completes the proof of Theorem 3.1.

Proof of Theorem 3.2 (M): According to [5], p can be centered, i.e.,

there exists an x0 E E and a strictly r-semistable p.m. v with the same

index such that u " v , . Thus, to complete the proof of (i), we needxo
to show that S is a truncated cone. We first show that sSv _ Sv  , for

any s1 . Let s I and set t s - I > . Using Lema 3.4, we



choose a sequence {kn) of positive integers such that I kn I [l/r
n]

and t n 3r n/  kn t, as n , . Then, since rn(1 - 1/0) 0 0 (note

1 < ),as n - ,and rn( 1  l/%)rn/O kn u rnkn , we have rnk O -0, as

n * . Therefore, by semigroup and continuity property of (up: p > 0}

(see Section 2), we have

rnkn * -rnkn

and

U -rnkn w

n rn k *k
as n *- . Therefore, using the fact that. u (u ) k aT

P Trn/

it follows, from Lemas 3.5 and 3.6 (note that {u: 0 < p _.po )  is tight

(see Section 2)) . that

SO aCr ( n)+ s , (3.2)

for each n - l, 2,..., and

Sa jon IU J , (3.3)
=I n>J "n

: (kn)
where S denotes the kn-fold sum of S • Now let x e S • Then, byii 1here

(3.3), for each j 1, 2,...,

x enU Sn] (3.4)
* n!,j 1n. (4

Let be the set of pairs (W, n) ,where W is an open nbd. of x and n

is a positive integer such that W n S U . Define the relation



< on 2 by (W1, n1 ) n(W2 , i2) if and only if W2 cW1  and n.1 _n 2 .

Using (3.4), we can easily verify that (j, _) is a directed set. Let

x(Wn) be any element in W nAS and let t Utn • Then

{t(w, n)I is a subnet of {tn} and X(W, n) - x . Now, by (3.2),
" tx + X sx eS

t(w. n)X + x(W, n).E S ; and, clearly, t(W, n)X + x(W, n)t XE

since S is closed. We will now show that S is a semigroup. Let
IAI

x, y'e S; . Choose, as before, kc. 's such that t. a r n/a k1 -o 1 . Since

y.E (U Su , for each- j = 1, 2,... , (from (3.3)), we can define,
Jn>j n

as above, a net (Y(W, n)l such that Y(W, n) E W n Sn and

Y(W, n) - y . Also, if t(W, n) a tn , then, as before, {t(W, n)l is a

subnet of (tn } . Now t(W. n)X + Y(W, n).E S, (by (3.2)); hence , since

t(W, n)x + Y(W, n) x+ x y and S is closed, x + ye S

Proof of Theorem 3.2 (ii): Again we write I a U0 * ax0 with U0

strictly r-semistable p.m. of index cE (0, 1) [5], and show that S"0

is a convex cone. First we show that S is a semigroup. Let B be a

Banach space and g a continuous linear map from E to B . Let

X = -  '0 g-I , then we assert that x is strictly r-semistable with the

same index a . To see this one first notes that x is K-regular i.d.

and that for any rational s > 0 , s . g (this uses the fact that

the factor measure appearing in the definition of a K-regular i.d. measure

i on a LCTVS is unique). Then using continuity of the semigroup, one obtains

that A MO g , for all reals s > 0 . Hence

Xrn r *g 1  Trn/ T n/x , showing x Is strictly

r r

{r-semstable of index . Now using the fact that S 0 is the projective

limit of supports of measures of the type u0 o g *(see (13]) , it will

F follow that S Is a semigroup, if we can show that S i is a semigroup.

I,_ _



From Lema 3.7, i(f) - exp{ (etf(x) " 1)dF,(x)} , f e B* , where B*

is the topological dual of B . Let v - * ,a ,where a f x dF(x)
K

(note that since, by Lemma 3.7, f PK dFA < , a E B ; here K and PK
K

are as in Theorem 3.1). Let Un denote the closed unit disc around e In

B of radius 1/n, n - 1, 2,... ; we will show a M 6a . 6a , where
Un

a is as defined in Theorem 3.1() . Since we already know that (da a

is tight (Theorem 3.1(11)) , to prove $an -_ 0a , it Is sufficient to

prove that an (f) a 6a(f) , for every f.E.8* . But this follows from

in a
letf(an) -etf(a) < I f(x) dF,(x)I ! Om PK dFx . for every

-nn n

f E B* and the dominated convergence theorem. Thus, since S, a I(TF + a

(Theorem 3.1(11)) - S + a , we have S , . Showing S, is a semi-

group, and hence SUo is a semigroup. Now we will show that St - S 0 , for

t > 0 . Let F be the Levy measure of u0 ; then, by Lemma 3.7,

(f) exp(f (eIf(x) - 1)dF(x)) . Therefore, letting g as above,

i(f).- expf (elf(g(x)) - 1)dF(x)} - exp{{ g (etf(g(x)) - 1)dF(x)}

(goo)

exp{ f (eif(x) - l)Fog 1'(dK)} - exp{ lief(x) - l)dG(x)},

for f C B* , where G a Fog- /B\{el . This, the fact that 6 is Levy (this

can be proved directly by just using the definition of.a Livy measure), and

the uniqueness of Livy measure, imply that G a F . Thus
t  exp( (etf(x) - l)tF } (see Section 2(11)) ; therefore

S t Gt- ) G . Hence, since St is the projective limit of sup-

4 ports of measures of the type xt  [13, we have S t a S . To finish the
IS V

'ho 'h



proof we need only show that sSo c S1o , for 0 < s < I . This we do

in the following:

For s E (0, 1) , choose by Lemma 3.4, kn E {l,..., - ]} such that

rlnl kn  s,as n -. Now by using the facts U r kn nn  T n

and S S t > 0, we get
10

(kn)

where S 0 s the kn-fold sum of S 0. Hence for x E S 0,

r n/  knXE S 0,so sx E S since rn/o knx > sx, as n.

Proof of Theorem 3.2011): Since u is symmetric and i.d., S is
n 1 n

a subgroup, by Theorem 3.1. Now, u1 * U - and the fact that u1

is symnmetrici.d. imply that

r [ n S + S n1rn 11
1A

and af ESr . Consequently, rn S a S , for all n - 1, 2,... , and

hence S is a subspace.

Remark 3.8: The fact that S 0 is a subgroup and that S1 t - U 0

shown above In the proof of part (ii) can also be recovered from [16]. But

in order to keep the paper self contained we relied on our result rather

~than using [16).

4. SEJMINORM INTEGRABILITY THEOREM FOR r-SEMISTABLE MEASURES

As we noted in the introduction, the proof of the result of this section

is classical (see, for example, [3]); therefore, we will only give an outline

of the proof and refer the reader to [11] for details, where a similar result



is obtained in Hilbert spaces.

Theorem 4.1: Let ua be a K-regular r-semistable p.m. of index

S(0, 2) on E and let p be a continuous seminar. on E Then

p p(x) jA(dx) < (4.1)

Outline of the Proof: Let u N a ( T-lu) ,the syummetrization

of k .BFubin': theorem, it issfficienttopov te (4.1) for v

(K-regular~~ ~ ~ ~ ~ ssymmetric r-swistable o h aeidx LtNb h

taccohrdeigto a5,wev separable Banach sac 8 of This ismpoutlined

of~~ (N hhtis(B n Thoe 10 fof l ,2 i (oles that 8isth
(-WI+

clsr i fth upot fx ostv atoasr ic



kn *Trnla x F

on complements of nbds of e in B , where F is the Levy measure of .

Now repeating the proof of Theorem 3.4 of [11], for given c > 0 and

positive integer m, one can choose to  such that if t > to , then

b m ( + -1 Qx(t)
a (1 + 0 - a bma~( E) , (4.2)

-QO(b'"t) -

where a - 1r , b a r and Q,(t) - x(te B: 11A1 t}. Now using

(4.2) and following the proof of Theorem 3.5 of [11], one obtains

HIA1N dx < - ; which completes the proof.

Remark 4.2: It is worth noting that this theorem also provides a third

proof of the seminorm integrability result for stable p. measures, which

is different from the first two (obtained by de Acosta [1] and Kanter [81),

as long as the measures are defined on LCTV spaces and p is a continuous

seminorm.
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Note: Under the assumptions of theorem 3.1 (ii) , one can indeed prove

that b f xdF belongs to E and that aU - b (and hence
K

S = b + U7m')'. This fact, which shortens, to some degree, the proof of

Theorem 3.2(ti), has been pointed out to us by several readers.
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